
Solutions for Homework 2

1. The isotropic point kernel and the anisotropic point kernels are used to do problems

a and b, respectively.

1a) The differential length for the ring source is d� = r0 dΦ.

φ(z0) =

∫ 2π

0

q0

4π(r2
0 + z2

0)
r0 dΦ =

q0r0

2(r2
0 + z2

0)
.

1b) An extra factor of µ is present in the kernel because of the µ-dependence of the

source.

φ(z0) =

∫ 2π

0

q0

4π(r2
0 + z2

0)

z0

(r2
0 + z2

0)
1/2

r0 dΦ =
q0r0z0

2(r2
0 + z2

0)
3/2

.

2. The isotropic point kernel and the anisotropic point kernels are used to do problems

a and b, respectively.

2a) The differential surface for the disk source is dA = r dr dΦ.

φ(z0) =

∫ 2π

0

∫ r0

0

q0

4π(r2 + z2
0)

r dr dΦ

=
q0

4
�n

{
1 +

r2
0

z2
0

}
.
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2b) An extra factor of µ is present in the kernel because of the µ-dependence of the

source.

φ(z0) =

∫ 2π

0

∫ r0

0

q0

4π(r2 + z2
0)

z0

(r2 + z2
0)

1/2
r dr dΦ

=
q0

2

{
1− z0√

r2
0 + z2

0

}
.

3a) The limit as r0 → ∞ of q0

4
�n

{
1 +

r2
0

z2
0

}
is ∞.

3b) The limit as r0 → ∞ of q0

2

{
1− z0√

r2
0+z2

0

}
is q0

2
.

4a) First we use delta-function sources with vacuum boundary conditions.

a) The equation to be solved is

µ
∂ψ

∂x
=

q0

4π
δ(x) , for µ > 0,

on the interval, [0,∞), with ψ(0) = 0. Dividing the above equation by µ and

integrating it over (0− ε, 0 + ε), where ε is arbitrarily small, one finds that the

solution must jump at x = 0 by q0

4πµ
. Thus the angular flux solution is

ψ(x) =
q0

4πµ
.

It is clear that scalar flux associated with this angular flux solution is infinite.

b) The equation to be solved is

µ
∂ψ

∂x
=

q0µ

4π
δ(x) , for µ > 0,
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on the interval, [0,∞), with ψ(0) = 0. Dividing the above equation by µ and

integrating it over (0− ε, 0 + ε), where ε is arbitrarily small, one finds that the

solution must jump at x = 0 by q0

4π
. Thus the angular flux solution is

ψ(x) =
q0

4π
,

and the scalar flux solution is

φ = 2π

∫ 1

0

q0

4π
dµ =

q0

2
.

4b) Next we use incident fluxes with zero sources.

a) The equation to be solved is

µ
∂ψ

∂x
= 0 , for µ > 0,

on the interval, [0,∞). This equation obviously has a constant solution. Re-

membering that, in general, one divides a surface source by
−→
Ω · −→

n to obtain

the corresponding incident flux, we divide q0

4π
by µ to obtain the incident flux,

which is also the solution:

ψ(x) =
q0

4πµ
.

As previously noted, the corresponding scalar flux is infinite.

a) The equation to be solved is

µ
∂ψ

∂x
= 0 , for µ > 0,
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on the interval, [0,∞). We divide q0µ
4π
by µ to obtain the incident flux, which is

also the solution:

ψ(x) =
q0

4π
.

As previously noted, the corresponding scalar flux solution is

φ =
q0

2
.

5) Starting with the integral equation for the angular flux,

ψ(
−→
r ,

−→
Ω ) = ψ(

−→
r − sb

−→
Ω ,

−→
Ω ) exp

[
−

∫ sb

0

σt(s
′) ds′

]
+

∫ sb

0

Q(−→r − s
−→
Ω ,

−→
Ω ) exp

[
−

∫ s

0

σt(s
′) ds′

]
ds , (1)

we derived various kernels for the scalar flux in class. This was basically done by

integrating Eq. (1) over all directions and manipulating the integrand. The final

result was

φ(
−→
r ) =

∮
Γ

ψ(
−→
r

′
,
−→
Ω 0)|

−→
Ω 0 · −→n |

‖−→r ′ − −→
r ‖2

exp
[
−τ(

−→
r

′
,
−→
r )

]
dA′ +

∫
D

Q(−→r ′′
,
−→
Ω 0)

‖−→r ′′ − −→
r ‖2

exp
[
−τ(

−→
r

′′
,
−→
r )

]
dV ′′ , (2)

where

−→
Ω 0 =

−→
r − −→

r 0

‖−→r − −→
r 0‖

, (3)

with
−→
r 0 denoting the integration variable associated with the kernel, e.g.,

−→
r 0 =

−→
r

′

in the area kernel and
−→
r 0 =

−→
r

′′
in the volumetric kernel. Since we want

−→
J · −→n 0,

4



where
−→
n 0 is an arbitrary normal, we need simply multiply Eq. (1) by

−→
Ω ·−→n 0 before

we perfom the angular integration:

ψ(
−→
r ,

−→
Ω )

(−→
Ω · −→n 0

)
= ψ(

−→
r − sb

−→
Ω ,

−→
Ω )

(−→
Ω · −→n 0

)
exp

[
−

∫ sb

0

σt(s
′) ds′

]
+

∫ sb

0

Q(−→r − s
−→
Ω ,

−→
Ω )

(−→
Ω · −→n 0

)
exp

[
−

∫ s

0

σt(s
′) ds′

]
ds . (4)

Carrying out the very same manipulations on Eq. (4) as were originally carried out

on Eq. (1), we get

−→
J (

−→
r ) · −→n 0 =

∮
Γ

ψ(
−→
r

′
,
−→
Ω 0)|

−→
Ω 0 · −→n |

(−→
Ω 0 · −→n 0

)
‖−→r ′ − −→

r ‖2
exp

[
−τ(

−→
r

′
,
−→
r )

]
dA′ +

∫
D

Q(−→r ′′
,
−→
Ω 0)

(−→
Ω 0 · −→n 0

)
‖−→r ′′ − −→

r ‖2
exp

[
−τ(

−→
r

′′
,
−→
r )

]
dV ′′ . (5)

6a) For this problem,
−→
Ω 0 · −→

n 0 = µ, so there is just another factor of µ in the

integrand:

Jz(z0) =

∫ 2π

0

q0

4π(r2
0 + z2

0)

z0

(r2
0 + z2

0)
1/2

r0 dΦ =
q0r0z0

2(r2
0 + z2

0)
3/2

.

Note that the current for an isotropic source is the same as the scalar flux for a

cosine-law source (see Problem 1b).

6b) For this problem,
−→
Ω 0 · −→

n 0 = µ, so there is just another factor of µ in the

integrand:

Jz(z0) =

∫ 2π

0

q0

4π(r2
0 + z2

0)

z2
0

(r2
0 + z2

0)
r0 dΦ =

q0r0z
2
0

2(r2
0 + z2

0)
2
.
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7a) For this problem,
−→
Ω 0 · −→

n 0 = µ, so there is just another factor of µ in the

integrand:

Jz(z0) =

∫ 2π

0

∫ r0

0

q0

4π(r2 + z2
0)

z0

(r2 + z2
0)

1/2
r dr dΦ

=
q0

2

{
1− z0√

r2
0 + z2

0

}
.

Note that the current for an isotropic source is the same as the scalar flux for a

cosine-law source (see Problem 2b).

7b) For this problem,
−→
Ω 0 · −→

n 0 = µ, so there is just another factor of µ in the

integrand:

Jz(z0) =

∫ 2π

0

∫ r0

0

q0

4π(r2 + z2
0)

z2
0

(r2 + z2
0)

r dr dΦ

=
q0

4

{
1− z2

0

r2
0 + z2

0

}
.

8a) The limit as r0 → ∞ of q0

2

{
1− z0√

r2
0+z2

0

}
is q0

2
.

8b) The limit as r0 → ∞ of q0

4

{
1− z2

0

r2
0+z2

0

}
is q0

4
.
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